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Infinite-dimensional Lie groups and algebraic geometry
in soliton theory

By G. WiLsont
Institute for Theoretical Physics, Santa Barbara, California 93106, U.S.A.

We study several methods of describing ‘explicit’ solutions to equations of Korteweg—de
Vries type: (i) the method of algebraic geometry (Krichever, .M. Usp. mat. Nauk 32,
183-208 (1977)); (ii) the Grassmannian formalism of the Kyoto school (iii) acting
on the trivial solution by the ‘group of dressing transformations’ (Zakharov, V. E.
& Shabat, A. B. Funct. Anal. Appl. 13 (3), 13-22 (1979)). I show that the three methods
are more or less equivalent, and in particular that the ‘7-functions’ of method (ii)
arise very naturally in the context of method (iii).

1. INTRODUCTION

In this lecture we shall be concerned with the Korteweg—de Vries (K.d.V.) equation
Uy = Ugy, + Ouuy, ' (1.1)
the modified Korteweg—de Vries (m.K.d.V.) equation

9 = Yoge— 00°4s; (1.2)
and the Miura transformation

u=qx_q2 (13)

relating them (if ¢(x, ¢) is any solution of the m.K.d.V. equation then the function u(x, t) defined
by (1.3) is a solution of the K.d.V. equation). We shall concentrate on just one aspect of the
elaborate theory of these equations: they have a fairly large class of explicit solutions, which
are most elegantly (and naturally?) written in the form

q = 0/0x log7,/7, (1.4)
or u = 20%/0x% logT. (1.5)

In the theory of Krichever (1977) the ‘7-functions’ occurring in these formulae are essentially
f-functions of hyperelliptic Riemann surfaces: the class of solutions that we shall discuss is larger
than Krichever’s, but shares with it the property that the 7-functions are entire functions of the
variables x and ¢.

The material is organized as follows. In §2 I introduce (for the K.d.V. equation) the class
of solutions just mentioned, and explain the connection with the ‘group of hidden symmetries’
G of the equation: G is the group of maps from the unit circle $* to SL(2, C). The exposition
follows Segal & Wilson (1985), which in turn follows Krichever (1977) and Date et al. (1981).
In §3 I discuss (for the m.K.d.V. equation) the ‘dressing’ construction of Zakharov & Shabat
(1979): it amounts to defining an action of G on a certain space associated with the equation.

1 Permanent address: Mathematics Department, Imperial College, 180 Queen’s Gate, London SW7 2BZ, U.K.
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394 G. WILSON

The G-orbit of the trivial solution ¢ = 0 covers (via the Miura transformation) the class of
solutions of the K.d.V. equation considered in §2. Section 4 shows how the 7-functions, and
in particular the formula (1.4), arise in the context of the Zakharov—Shabat construction: the
key point is that we have to bring into play the universal central extension of G. The exposition
in §§3, 4 follows Wilson (1984).

According to Drinfel’d & Sokolov (1981, 1984), the K.d.V. and m.K.d.V. equations have
natural generalizations in which the symmetry group G is the group corresponding to any affine
Kac—Moody algebra (see Kac 1983). One of the motivations for the work presented here was
to understand how to implement the apparently new ideas of Date et al. (1981) in the more
general context of the affine algebras. Essentially the entire theory goes through in this context;
although I have not tried to discuss this here, from §3 onwards the material is presented in
such a way that the generalization is immediate. Nevertheless, a few things do not survive in
the general case; one example of such a casualty is the very popular formula (1.5). The reason
is explained briefly at the end of §4.

2. THE cURVE-GRASSMANNIAN CONSTRUCTION FOR THE K.d.V. EQUATION

We first review quickly the Lax representation of the K.d.V. equation. Set
L = 0®+4u(x,1),
where 0 = 0/0x. Then the K.d.V. equation (1.1) is equivalent to
L, =[P, L], (2.1)
where 1P; = 03+ 3ud +u,,.

The form of the operator P, is determined by the requirement that the right side of (2.1) should
be a multiplication operator (i.e. of order zero in 0), together with a homogeneity property:
P, is homogeneous of weight 3 if we give 3 weight 1, and u® = &u/0x’ weight 24j. More
generally, for each integer r > 0 there is a unique operator P,, ., of the form

P

are1 = 027114+ (lower terms)

with coefficients that are homogeneous polynomials in « and its x-derivatives «), and such that
[P,,,,, L] is a multiplication operator. The equation

Lt = [P2r+1> L]

is then equivalent to a single evolution equation for «, which is called the rth equation of the K.d.V.
hierarchy. A basic fact is that if we regard each of these equations as defining a flow on a suitable
space of functions u(x), then these flows all commute with each other. It is therefore reasonable
to consider simultaneous solutions of any number of equations of the hierarchy; that is, functions
u(x, ty, b, ...) such that if we fix the values of all the #; except one, say ¢,,,,, then the resulting
function of x and #4,,,, is a solution of the rth equation of the hierarchy.

Now we describe Krichever’s construction, in a slightly modified form taken from Segal &
Wilson (1985). In C? we consider the algebraic curve X’ with equation

#* =S,
where fis a polynomial of degree 2g + 1. The projection onto the A-plane exhibits X" as a double
covering of C; by adding a single point at infinity, say x,, we get a compact curve X, which

[ 60 ]
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is a double covering of the Riemann sphere 2. If all the roots of the polynomial f are distinct,
then X is non-singular, that is, it is a compact hyperelliptic Riemann surface. Near the point
x,, we fix a local parameter z7! on X so that the projection X—$? is given (locally) by z—22;
we suppose the validity of this parameter extends as far as the unit circle, so that we can use
it to identify a small neighbourhood D of x,, in X with the disc {z:|z| > 1}; in particular the
boundary of this neighbourhood gets identified with the unit circle §* < $%. Fix g points B, ...,
in X\ D, and consider the following space W of functions on S*: W consists of all square-integrable
Sunctions @:S*—C such that @ is the boundary value of a function on X\ D which is holomorphic except
Jor (possible) simple poles at the points P,, ..., F,. Thus W is a closed subspace of the Hilbert space
H = L[*($",C). All the information that we shall need from the data (X, D, B, ..., F,) is already
contained in the single object W.

Example 1. Suppose X is just the Riemann sphere. Here g = 0, so there are no points F;. Thus
in this case W is simply the space H, of boundary values of functions holomorphic in the disc
{z:|z| < 1}, that is, functions whose Fourier series involve only non-negative powers of z.

Now let us return to the general case.
Prorosition 1. (i) There is a unique function Yry, (x, t;z) of the form
YUw =exp(xz+t,28+...) (14+0(z7Y))

such that Yry (x,t; .) belongs to W for each fixed value of (x,t).
(i1) There are unique ordinary differential operators L, Py, | of the form

L=0+u(xt), P, =0+t .

Lw = 2%Yw, }

such that

2.2
Wy /Oty = Pypyy '/’W' (22)

(iii) The function u(x,t) is a solution of the K.d.V. equations.

Here and later ¢ denotes (Z,,1,...). The function ¥y, is called the Baker function of W (or
of the algebro-geometric data from which W was constructed). Of course, part (iii) of the
proposition follows at once from part (ii), since by definition the K.d.V. equations are the
integrability condition for the system (2.2).

It is worth noting that the g-soliton solutions of the K.d.V. equations can be obtained as
a special case of the above construction: we take X to be a rational curve with g double points,
i.e. X" is given by the equation

g
gt = 11 (A—a;)2.
1

As astill more special case, if we take X’ to be the curve u? = A29*1 we get the rational solutions
to the K.d.V. equations studied by (among others) Adler & Moser (1978).

Now, all the subspaces W < H that we have constructed have the following two properties:

(a) W < W;

(b) the orthogonal projection W— H__ is a Fredholm operator of index zero (that is, its kernel
and cokernel have the same finite dimension).

Indeed, (@) is obvious: by construction, W is invariant under multiplication by any function
on §! that extends to a holomorphic function on X\ D, and by hypothesis, z? has that property.
Property (b) is not surprising either: in general we have made only a ‘compact perturbation’
of the special case considered in example 1, so we expect W to be ‘close’ to the subspace H,

[ 61]
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arising in that case. A proof of (b) can be found in Segal & Wilson (1985); the proof shows
that if the points £, ..., F, are in general position, the projection W— H, is even an isomorphism.
Let us denote by Gr® the Grassmannian of all closed subspaces W of H satisfying the conditions
(a) and (b). Not every point WeGr® arises from an algebraic curve in the way we have
described. Nevertheless, if we examine Krichever’s (1977) proof of proposition 1, we see that
it uses only the two properties (a) and () ; that is proposition 1 remains true for any We Gr®,
Thus we have defined a map

Gr® — {solutions of the K.d.V. equations}.

It is important to note that the solutions u(x, ¢) that we have obtained are of a very special
nature: for example, for reasons that will become clear later, they are all meromorphic functions
defined on the entire complex planes of the variables x, t,, ... .

We are now in a position to see how loop groups enter into the picture. Let G be the infinite
dimensional Lie group of all smooth maps from the circle $* to SL(2,C). Let H® be the space
of all row vectors (fq, f;) with f;€ H = L*(S*,C); i.e. H® is the Hilbert space L2(S", C?). The
group G acts on H® in an obvious way:

go(foo 1) = o S &1

(the juxtaposition on the right is just the usual product of a vector and a matrix). On the other
hand, there is a natural isomorphism H® =~ H given by (f,,f,) <.f, where

S(2) = 1o(2%) +2/1(2%).
We use this isomorphism to transfer the G-action to H.

ProposiTION 2. The Grassmannian Gr'® is essentially the G-orbit of H, under this action.

Here the word ‘essentially’ refers to two things: to make the proposition literally true we
should need to take G to be the group ofloops in GL(2, C), rather than SL(2, C), and we should
also have to allow a wider class of loops than just the smooth ones. Neither of these points is
of any importance for our purposes: from now on we shall redefine Gr® to be the G-orbit of H,.

Proposition 2 means that Gr®® is a homogeneous space of G: that is, we have

Gr® ~ G/P,

where P < G is the isotropy group of H,. It is easy to describe P explicitly: it is the subgroup
of G consisting of those functions on the circle that are boundary values of holomorphic maps
D,—~SL(2,C), where D, is the disc {z:]z| < 1}.

In this section we have seen how to assign a (very special) solution of the K.d.V. equations
to each point of the homogeneous space G/P. It is natural to ask whether this is not just part
of a much bigger picture, i.e. whether our G/P is not just one orbit of a G-action on a larger
space that maps onto a larger space of solutions of the K.d.V. equations. This is indeed the
case; however, to understand it we have to start by considering the m.K.d.V. equations (and
then regard the K.d.V. equations as quotient systems of these, via the Miura transformation).

3. THE DRESSING ACTION FOR THE m.K.d.V. EQuAaTION

As we have seen, the K.d.V. equations are associated with the eigenvalue problem Ly = z%/,
where L = 024 u. On the other hand, the Miura transformation (1.3) can be written in the
form

L= (0—g) @+9).

[62]
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That suggests that the m.K.d.V. equations should be associated with the first-order system

@+q) ¢, = 2y,
©0—q) ¥y =29,
(which clearly implies Ly, = z%J,). We can write this system in the form

p = Uw (3.1)
where ¥ = (¢, ¥,)*

o0 Nt O, o

I shall explain the connection of the m.K.d.V. equations with the system (3.1) in more detail
in 2 moment; but first we must digress to clear up a potentially confusing point concerning
the symmetry condition satisfied by the matrix U.

Let g be the Lie algebra of smooth maps f:5*—sl(2, C) that satisfy the following condition:
in the Fourier expansion of f the coefficients of the even powers of z are diagonal matrices (of
trace zero), while the coefficients of the odd powers of z have zero diagonal entries. The matrix
U in (3.2) clearly satisfies this condition. It is equivalent to say that g consists of the smooth

maps that have the form
a(z?) zb(zz)]
“[z-lc(ﬁ) d(2?) (3-3)

(with d = —a). Let G be the group corresponding to the Lie algebra g, i.e. the group of all
smooth maps §*—SL(2,C) that have the form (3.3). In the previous section G denoted the
group of all maps from §! to SL(2,C) (not necessarily of the form (3.3)). However, there is
a natural isomorphism between these two groups G, namely

a(z) b(2) - a(z?)  zb(z?)
[C(Z) d(Z)] [2_10(22) d(zz)]' (3.4)

In what follows we shall use this isomorphism to identify the two groups G, that is, we shall
‘regard them as two different concrete realizations of the same underlying abstract group. The
realization used in §2 (with no symmetry condition on the maps) we shall call the standard
realization of G; the realization that we have just introduced (as maps satisfying (3.3)) will be
called the principal realization of G. For the rest of this section we shall work with the principal
realization.

Next, I explain the so-called zero curvature representation of the m.K.d.V. equations. By
definition, the rth equation of the m.K.d. V. hierarchy is the integrability condition for the system

QW /ox = ny,} 55)

0¥ /0ty =V ¥,

where U is given by (3.2) and ¥, is a polynomial of degree 27+ 1 in z, which is essentially
determined by the requirement that the integrability condition for (3.5), namely

[0—=U, 9/0ty4,— V] =0, (3.6)
or equivalently
0U/Btyyy = V,—[U, V], (3.7)

26 [ 63 ] Vol. 315. A.
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should reduce to a single evolution equation for ¢. More precisely, for each r > 0 there is a
unique matrix

0 1 LI
V= [ O]er+1+2 v, 2!
0

(of the form (3.3)) such that (i) the right side of (3.7) is of degree zero in z (ii) the entries in
the coefficients v; are polynomials in ¢ and its x-derivatives ¢¥), and ¥, is homogeneous of weight
2r+ 1 if we give z weight 1 and ¢? weight j+ 1.
For example, we have
V1 - I:- 4322 'E%(Qqs - qxx) 28 +%(qx - q2) z ]
Z -E(qx+qz) z qzz'_%(zqa"%cx)

>

the corresponding equation (3.7) is (apart from a factor 4) equivalent to the m.K.d. V. equation
(1.2) for ¢. Just as for the K.d.V. equations, the flows on the space of functions ¢(x) defined
by (3.7) for different values of r all commute with each other, so we can consider simultaneous
solutions ¢(x, t,, ¢, ...) to any number of equations of the hierarchy.

We now focus attention on the function ¥ occurring in (3.5). We shall interpret it as a
function of (x, t) with values in the loop group G (i.e. as a ‘fundamental solution matrix’, rather
than as a single solution of the system). Following Zakharov & Shabat (1979), we consider
the ‘gauge symmetries’ of the system, that is, we consider the possibility of replacing ¥ by
x(x,t;z) ¥, where y is some other function of (x,t) with values in G. Under such a
transformation U gets replaced by yUx™*+x, ¥~ and V, by a similar expression. Of course,
for any choice of y, the new (U, V) will still satisfy (3.6); however, in general they will not
have the special form needed to yield a solution to the m.K.d.V. equations, for example U will
not usually be of the form (3.2). We are thus led to the problem: given one acceptable function
¥, how can we choose y so that the new (U, V) are still of the right kind, i.e. essentially, so
that U is of the form (3.2) and V, is a polynomial in z of degree 27+ 1 with leading term

0 1
2r+19
[1 O]z :

This problem has a simple solution in terms of the Birkhoff (or Riemann-Hilbert) factorization
in the group G; we must digress to explain what that is.
Let us first go back to the Lie algebra g. It has an obvious direct sum decomposition

g=u_(—9b({|—)u+,

where u_ (resp. u,) is the subalgebra of maps §*—sl(2, C) whose Fourier expansion involves
only negative (resp. positive) powers of z, and ) is the one-dimensional subalgebra of constant
maps z->diag (a, —a), a€C. Let U_,H,U, be the corresponding subgroups of G; thus in
particular A is the group of constant maps z—diag (a, a™!), ae C*. It is not quite true that the
group G decomposes as the product U_HU_ ; however, it is true that multiplication defines
an injective map from U_ x H x U, onto a dense open subset of G, called the bug cell. If g belongs
to the big cell, we shall write

§=8-508+

for its unique factorization with g_e U_,g e H,g, € U,.

[ 64 ]
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ProposiTION 3. Let ¥(x,t;z) be a G-valued function of (x, t), which is of the right kind for the
m.K.d.V. equations (i.e. such that the corresponding U and V, are of the special form described
above). Then for any g€ G, the function

go V= (YgP 1Y (3.8)
is again of the right kind.

The proof is trivial: if we first calculate the new (U, V;) from (3.8) we see that they have
the right leading terms, but appear to involve some negative powers of z in their Fourier
expansions. However, if we do the calculation using the equivalent expression

go¥ = (Wg¥), (Yg¥), Yol (3.9)

we see that these negative powers of z are absent.
ProrosiTiON 4. The formula (3.8) defines an action of G on the space of suitable functions ¥'; i.e. we

have gohoW = (gh)o .

We should remark that the last two propositions have been formulated rather imprecisely;
for example, we have not specified what class of functions ¥ we want to allow. A more serious
point is that we have ignored the fact that the big cell is not the whole of G, that is, that the
factorization in the formula (3.8) may not exist. Happily, this problem is not as serious as it
might seem: we are saved by the fact that ¥ is not a fixed element of G, but a function of x
(and t). One can show that it is not possible for the expression ¥g ¥~! to lie outside the big
cell for a whole interval of values of x. Thus the formula (3.8) always makes sense provided
that we are prepared to allow ¥ to have some singularities: of course this means that the
corresponding solutions to the m.K.d.V. equations will have singularities too.

The G-orbit of the trivial solution ¢ = 0 to the m.K.d. V. equations is particularly interesting.
For the corresponding function ¥ we make the obvious choice

po = exp{(xz+t3z3+...) 0 1]}
1 0
Since P takes values in the group U,, the formula (3.8) simplifies slightly: we have -
g0 PO = (PO)~1 )

It is easy to see that go ¥ = ho ¥ if and only if ¢ and % belong to the same coset of the
group HU, = B; note that B is just the subgroup of all elements of G, which (in the principal
realization) extend holomorphically to the disc D,. It follows that the G-orbit of ¥® can be
identified with the homogeneous space G/B, so that proposition 3 defines a map

G/B—{solutions of the m.K.d.V. equations}.

On the other hand, in §2 we assigned a solution of the K.d.V. equations to each point of
a different homogeneous space G/P. The connection between these two constructions is very
simple. Recall that P is the subgroup of those elements of G that extend holomorphically to
the disc D, when we use the standard realization of G. Now, from (3.4) we easily see that B
is a little smaller than this; in fact in the standard realization of G, B consists of those maps
f:8'—>SL(2,C) that have a Fourier expansion

S2) =

i

oMg

a;z

26-2

[ 65]
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in which g, is upper triangular. Thus there is a natural projection G/B—G/P, and the fibre
P/B can be identified with the Riemann sphere S2.

Let yr(x, t; z) be the scalar valued function obtained by adding the two elements in the first
row of the matrix go P®. Reversing the calculation at the beginning of this section, we see
that if ¢ is the solution of the m.K.d.V. equations corresponding to the point gBe G/B, and
if we set L = (0—g¢) (0+¢), then we have

Ly = 2%
ProposiTiON 5. The above function i is the Baker function of the point gPe G /P = Gr®. Thus we
have a commutative diagram

G/B—{solutions of the m.K.d.V. equations}

v \’
G/P —{solutions of the K.d.V. equations}

in which the upper and lower horizontal arrows are those defined in the present section and in §2, respectively,
the left vertical arrow is the natural projection, and the right vertical arrow is the Miura transformation (1.3).

It may be worth remarking that there is a nice concrete realization of G/B as a flag manifold,
corresponding to the realization of G/P as the Grassmannian Gr'?. Indeed, going back to the
action of G on the Hilbert space H defined in §2, it is easy to see that B = PN P’, where P’
is the isotropy group of the subspace zH, of H. It follows that G/B can be identified with the
space of ‘periodic flags’

2W, < 2, = W,

where each W belongs to Gr®. In this realization, the projection G/B—>G/P is given simply
by (W, W;) > W,

Finally, we record a slightly more explicit expression for our solutions to the m.K.d.V.
equations. It is obtained simply by calculating the x-derivative of go ¥ using the alternative
expression (3.9).

ProPOsSITION 6. The solution of the m.K.d. V. equations assigned above to the point gB € G /B is given by

g(x,t) = —0/dx log (¥0g),. (3.10)

Here, as usual in this subject, 0/0x log f'is used as an abbreviation of f, /f. Of course (¥©g),
is really a function of (x, t) with values in H, but we are identifying H with C* in the obvious

way (the map z—>diag (a,a™) is identified with the number a).

4. THE GROUP é AND THE T-FUNCTIONS

The main purpose of this section is to explain why it is natural to rewrite the formula in
proposition 6 in the form (1.4), involving certain entire functions 7,. The essential ingredient
is a central extension G of the loop group G. Unfortunately this is a less elementary object than
any we have encountered so far, and I shall have to omit the details of its construction. However,
at the Lie algebra level the situation is quite simple, so we begin with that.

Let g be the Lie algebra introduced in §3. Set

0 0 0 :z
“=\; o) 2\ o)’

w0 5) (D)
[ 66 ]
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These are all elements of g, and it is not hard to see that ¢, and ¢, generate the subalgebra
u, (topologically), while f; and f; generate u_. The four elements {e;, f;} together generate the
whole of g, with certain relations that are well known, but which we shall not write down. Set

hi = [eihf:i]’ 1= 0) 1)
so that h, = —hy = diag (1, —1).

Thus in g we have 4,4+ k, = 0. However, this relation is not a consequence of the other relations
in g, so we can consider the Lie algebra § defined by the same generators and relations as g,
except that we omit the relation £+ 4, = 0, so that 4, and 4, are linearly independent elements
of . Then § is a central extension of g with one-dimensional centre C generated by A,+#,.
The Lie algebra § (or more precisely the dense subalgebra of it generated algebraically by the
{e;, f;}) is an example of an affine Kac-Moody algebra: it is usually denoted by the symbol 4{V.
Corresponding to the three-part splitting of g that we used in §3, we have

g=u—®6@u+a

where b is the two-dimensional Abelian subalgebra spanned by 4, and 4,. Note that if we use
the bases {h,, ,} and {k,} to identify § and b with C* and C, respectively, then the projection
m:h—>his given by

m(u,v) = v—u.

Now, in the infinite-dimensional case it is by no means true that there is a Lie group
corresponding to every Lie algebra. Nevertheless, there is a Lie group G corresponding to the
Lie algebra §: it is a central extension of G by C*, and has all the properties we would expect
from a consideration of the Lie algebras. The most concrete available construction of G is due
to G. Segal, and goes along the following lines (for details see Segal & Wilson (1985) or Pressley
& Segal (1985)). Go back to the Grassmannian Gr® of §2. Over it we have the tautological
bundle whose fibre over a point WeGr® is W itself. By using the theory of Fredholm
determinants, it is not hard to make sense of forming a holomorphic line bundle that can be
thought of as the ‘top exterior power’ or determinant bundle of this. The desired group G can
then be obtained as the group of holomorphic automorphisms of this line bundle: it can be
described quite explicitly as a quotient of a certain group of operators on the Hilbert space H.

We now suppose that, by the above method or otherwise, we have constructed the group
G and proved that it has all the expected properties. In particular, G has subgroups U_, H, U,
corresponding to the subalgebras u_, b, u ., and there is the dense open subset U_HU, of G
covering the big cell in G. We use the same notation as before

§=28_48+

for the factorization of an element of U_HU,. Corresponding to our identification of b and
b with C? and C, the groups H and H get identified with C* x C* and C*, respectively;
and the projection 7: H-> H is given by

m(x,y) = 57y, (4.1)
Now fix ge G, and let ¢(x, t) be the solution to the m.K.d.V. equations associated in §3 to

the point gBeG/B. Let ¢ be any element of G with 7(g) = g. Since ¥ (x,t;z) takes values
in U,, which is a subgroup of G, the expression (¥®g), makes sense: it is a function of (x, t)
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with values in H = C* x C*. We denote its two components by To(x, 1), 7,(x, t). Combining the
formulas (3.10) and (4.1), we find that the m.K.d.V. solution ¢ is indeed given by

g =0/0xlog7,/T,. (4.2)

Now, each 7, is a function of (x, t) with values in C*; it is defined only for those values of (x, ¢)
such that ¥©(x, ¢; z) § belongs to the big cell in G. Thus a priori it looks as if the functions 7,
will have singularities at points (x,¢) for which this is not so. However, the formula (4.2) is
to be considered an advance over (3.10) precisely because that does not happen.

ProposiTiON 7. The functions T, T, are entire functions of (any number of ) the variables x, t,, 8, ... .

Clearly, this proposition is not of a formal nature, but reflects the fact that G is in some sense
a ‘better’ group than G. It is easy to prove the proposition if we suppose that we have
constructed holomorphic representations of G corresponding to the well known highest weight
representations of the affine algebra 4{" (see Kac 1983). In particular, let & be the space of
the ‘basic’ irreducible holomorphic representation of G; in & we have the highest weight vector
€, characterized by the properties that

(i) the subgroup U, fixes £,

(ii) the subgroup H = C* x C* acts on 2 by

(x,y) 2 = xQ.

The space & has a Hermitian inner product  , ) (we take it to be complex linear in the second
variable), which is contravariant with respect to a certain anti-holomorphic involution @ of
G. At the Lie algebra level,  can be characterized by the properties w(e;) = —f;, where {¢,, f;}
are the canonical generators for § introduced in §3: concerning w, we need to know only that
it interchanges the subgroups U, and U_. ‘Contravariant’ means that we have

{u, vy = {w(g) u,0).
Granting all this, we can make the following simple calculation: for brevity set p = ¥¢; then

(Q,p2) =<2, p_@p, 2)
= {0(Q-) 2, @, 2)
=<0, Do Q)

=TO’

where in the last step we suppose that 2 is normalized so that {2, Q2) = 1. We thus have the
formula (due to Date ¢t al. (1981))

To(%, 8) = L, PO (x,t;2) §2),

from which it is clear that 7, is an entire function. The argument for 7, is the same, by using
the other fundamental representation of G (characterized as above, but with x and y interchanged
in property (ii) of the vector £).

We remark that the use of representation theory in the proof of proposition 7 is not essential :
in Segal & Wilson (1985) a proof is given that is formulated entirely in terms of the geometry
of the determinant line bundle over Gr®. However, this proof is morally equivalent to the
preceding one: the connection is that the space & of the basic representation can be realized,
Borel-Weil fashion, as the space of holomorphic sections of the dual of the determinant bundle.

If we apply the Miura transformation (1.3) to the formula (4.2), then, in view of proposition
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5, we get a formula for the solution « of the K.d.V. equations associated to a point gP of G/P.
This formula involves both the 7-functions 7;. However, as I mentioned in the introduction,
there is a famous formula for « involving only 7,, namely

u = 20%/0x% log 7.

I shall not prove this formula here (it is a surprisingly complicated story), but I do want to
explain why, from our present point of view, we should expect « to depend only on 7.
We return to the basic representation & of G. We can define a map

@: & —{functions of x, £, ...}

@) (%, 15, ...) = {2, PO (x, t;2) v).

as follows:

A remarkable fact is that this map is injective, so that the basic representation of G can be
realized on a suitable space of functions of the (infinitely many) variables x, ¢;, ¢, ... . This is
called the principal realization of the representation (cf. Kac 1983). If v = g€ belongs to the orbit
of the highest weight vector, then @(v) is just our function 7,. Now, in the projective space of
&, the orbit of the highest weight vector is G/P = Gr?; thus the injectivity of ¢ implies that
a point of Gr® is uniquely determined by the corresponding 7-function 7,. Since the K.d.V.
solution u is constructed by starting just from a point of Gr'®, we expect there to be a formula
expressing « in terms of 7,.

As I mentioned in the introduction, when the point gP € Gr® arises from a Riemann surface
in the way described in §2, the function 7, can be written down explicitly in terms of the
Riemann 6-function; for the degenerate cases giving the soliton or rational solutions, 7, can
be written down in terms of elementary functions. For details I refer to Segal & Wilson (1985);
here I just mention the beautiful observation of M. Sato that for the rational solutions certain
of the functions 7, are Schur polynomials. It would be interesting to have more information
about the general 7-functions, corresponding to points of Gr‘® that do not arise from an
algebraic curve. At present it seems that nothing is known about them except that they are
entire functions.

To conclude, I want to comment on the one part of the above theory that does not generalize
when we replace G by the loops on any simple Lie group, or, slightly more generally, when
G is the loop group corresponding to any affine Kac-Moody algebra §. If [ is the rank of §,
then § has /+ 1 fundamental highest weight representations &;; the orbit of the highest weight
vector in the projective space of &; is a homogeneous space G/F; of G, which we can think of
as a generalized Grassmannian. Corresponding to each point of G/F, we have a 7-function 7,:
it is a function on the positive part (in the sense of the principal grading) of the principal
Heisenberg subalgebra of §. For each : =0,1,...,/, Drinfel’d & Sokolov (1981,1984) have
defined a generalized K.d.V. hierarchy; each of these is a quotient of a single m.K.d.V.
hierarchy associated with §, via a generalized Miura transformation. The arguments given
above apply at once to give a simple formula like (1.4) for a class of solutions of the generalized
m.K.d.V. equations in terms of the /+ 1 functions 7;. Further, for each ¢ we can define a map
@, just as above, from &; to the space of functions of infinitely many variables (x, t). However,
this map is usually not injective, so that in particular a point of a ‘Grassmannian’ G/F, is in
general not determined by the corresponding 7-function. That is why we can not hope, in
general, to have formula like (1.5), expressing solutions of an equation of K.d.V. type in terms
of a single 7-function.
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